Seismic evidence for the \(\alpha\)-\(\beta\) quartz transition beneath Taiwan from Vp/Vs tomography

H. Kuo-Chen,1,2,3 F. T. Wu,1,3 D. M. Jenkins,1 J. Mechicie,4 S. W. Roecker,5 C.-Y. Wang,2 and B.-S. Huang6

1Department of Geological and Environmental Sciences, State University of New York at Binghamton, Binghamton, New York, USA.
2Institute of Geophysics, National Central University, Jhongli, Taiwan.
3Department of Earth Sciences, University of Southern California, Los Angeles, California, USA.
4Deutsches GeoForschungsZentrum, Potsdam, Germany.
5Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA.
6Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan.

Received 22 August 2012; revised 16 October 2012; accepted 18 October 2012; published 20 November 2012.

Knowledge of the rock types and pressure-temperature conditions at crustal depths in an active orogeny is key to understanding the mechanism of mountain building and its associated modern deformation, erosion and earthquakes. Seismic-wave velocities by themselves generally do not have the sensitivity to discriminate one rock type from another or to decipher the P-T conditions at which they exist. But laboratory-measured ratios of velocities of P to S waves (Vp/Vs) have been shown to be effective. Results of 3-D Vp and Vp/Vs tomographic imaging based on dense seismic arrays in the highly seismic environment of Taiwan provides the first detailed Vp/Vs structures of the orogen. The sharp reduction in the observed Vp/Vs ratio in the felsic core of the mountain belts implies that the \(\alpha\)-\(\beta\) quartz transition temperature is reached at a mean depth of 24 \(\pm\) 3 km. The transition temperature is estimated to be 750 \(\pm\) 25°C at this depth, yielding an average thermal gradient of 30 \(\pm\) 3°C/km.

1. Introduction

One of the goals of seismic imaging is to infer the nature of the material through which the waves propagate, providing in effect a subsurface geological map. Vp or Vs alone is insufficient for separating the gross rock compositions from the pressure and temperature effects, but laboratory measurements show that the Vp/Vs ratios are sensitive to them [Kern, 1982]. Although the ratios are noticeably pressure-dependent below 200 MPa (~7 km depth) due to the presence of micro-cracks, above 200 MPa these cracks close and the Vp/Vs ratios correlate with modal mineralogical composition and do not significantly change with pressure [Wang and Ji, 2009]. Thus, the seismic velocity ratios can be interpreted in terms of crustal rock materials [Hyndman, 1979; Castagna et al., 1985; Jizba, 1991; Holbrook et al., 1992; Castagna et al., 1993; Christensen, 1996; Matsumoto et al., 2010]. Vp/Vs ratios for crack-free rocks vary in the range of 1.5–1.9, with quartz-rich rocks generally in the lower and mafic rocks in the higher ranges [Kern, 1982; Christensen, 1996]. In a global survey, Zandi and Ammon [1995] argued for the wide presence of felsic rocks in Mesozoic-Cenozoic active orogenic belts based on observed low Vp/Vs ratios. Low ratios have also been obtained for the American Cordillera [Lowry and Pérez-Gussinyé, 2011], Qaidam [Jiang et al., 2006], Pamir [Mechic et al., 2012], and Tibet [Mechic et al., 2004].

Laboratory measurements show a further property of Vp/Vs ratios in quartz-bearing rocks: as temperature rises, a minimum is reached at the \(\alpha\)-\(\beta\) quartz transition (ABQT) and beyond the transition the ratio rises sharply [Kern, 1982; Shen et al., 1993; Ohno et al., 2006]. Low Vp/Vs ratios that would imply the presence of ABQT have not appeared in global surveys, probably because of the averaging effects in sampling large bodies and limited resolution. However, Mechic et al. [2004] have determined ratios as low as ~1.63 in central and southern Tibet using 2-D seismic arrays and found low ratios at depths of 18 and 32 km, respectively, and estimated the corresponding temperatures at ~700 and ~800°C from the known phase diagram of the \(\alpha\)-\(\beta\) quartz transition (ABQT) [Shen et al., 1993]. An exceptional opportunity arose for measuring the Vp/Vs ratio in Taiwan, an active orogeny using data from the TAIGER (Taiwan Integrated Geodynamic Research) project of 2004–2009 [Kuo-Chen et al., 2012]. A large amount of seismic data was acquired because of the very high local seismicity and the dense arrays used to record it (Figure 1), rendering it possible for the high-resolution imaging of 3-D Vp and Vp/Vs structures. An independent estimate of temperature inside an active orogen based on ABQT may provide important constraints for modeling geological processes in progress.

2. Tectonic Setting

The young and active Taiwan orogen (~6.5 Ma) [Chai, 1972] is a result of the collision of the oceanic Philippine Sea plate with the eastern edge of the Eurasian plate, with the latter including a part of the Eurasian continental shelf and the South China Sea basin (Figure 1). In the main collision zone, the principal geologic/tectonic units at the surface are defined from east to west as follows: (1) the Coastal Range (CoR), which is the compressed ancient Luzon Arc and its forearc; (2) the Longitudinal Valley Fault (LVF), which is the suture between the Eurasian and Philippine Sea plates that separates the CoR from the Central Range; (3) the Central Range (CR), composed of the pre-Tertiary basement of the continental margin of the Eastern Central Range (ECR) and the Miocene to Eocene slates of the Western Central Range.
the coherent P and S arrival picks from strategically located small events recorded at the full dense arrays could be used for verifying the key features in the Vp and Vp/Vs images (Figures S1 and S4 in Text S1). In this study, the Vp and Vp/Vs models are constructed with 6 × 6 × 6 km grids and ~3,000 sources are used for the tomographic inversions. Based on checkerboard tests, the structural images down to 60 km for Vp/Vs and to a greater depth for Vp are reasonably well resolved - the difference arises from the better spatial coverage of ray paths of P waves than that of S waves (Figures S2 and S3 in Text S1; see detailed descriptions of methods and resolution tests in the auxiliary material).

4. Low Vp/Vs Ratios Beneath the Central Range

[6] With frequent local earthquakes under Taiwan a large number of SH arrivals picks were obtained from the TAIGER seismograms. Combining with the P picks used in Kuo-Chen et al. (2012) and employing the same Roecker algorithm [Roecker et al., 2006] we jointly invert the P and S picks to derive 3D Vp and Vp/Vs models. As demonstrated by Menke [2005] such inversion resolves better the resulting models than inverting for Vp and Vs independently. The 0–6 km slice in Figure 2a shows that Vp/Vs variations are closely correlated with changes in surface geology similar to Vp [Kuo-Chen et al., 2012]; regions of low Vp (3.5 to 5.0 km/s) [Kuo-Chen et al., 2012] and low Vp/Vs (<1.73) coincide with the major sedimentary basins in Taiwan (Figures 1 and 2a). Low Vp/Vs values are also associated with the deep (>12 km) basins such as the Pingtung Plain (PP) and the Hoping Basin (HB) offshore (Figures 1 and 2a). At greater crustal depths beneath the Central Range, at the depth between 12 and 42 km, a zone of remarkably low Vp/Vs ratios of less than 1.7 is found (Figures 2c and 2d). With the earthquakes at lower crustal depths the seismic rays traveling to the eastern and western stations traverse through regions of relatively high ratios and only the waves reaching the stations in the high ranges sample the low ratio materials (Figure 2c). In Figure 2d, the Ts/Tp ratios for stations on both the east and west sides of the Central Range are greater than 1.73 but for stations in the high ranges the values are less than 1.73. The predicted arrival times of P and S waves using our Vp and Vp/Vs models superposed on the seismogram plots show good agreement and the residuals are general smaller than 0.3 sec (Figure S4 in Text S1).

[7] To facilitate interpretation, we compiled Vp/Vs vs Vp for a host of rocks as shown in Figure 3a, based on published laboratory results [Hyndman, 1979; Castagna et al., 1985; Jizba, 1991; Holbrook et al., 1992; Castagna et al., 1993; Christensen, 1996; Matsumoto et al., 2010]. The mafic rocks (blue circles) are generally in the upper right part of the diagram and the felsic rocks (red circles) appearing in the middle, hover around 1.73 or less than 1.6, for quartzite and quartzite granulite. In the lower left are rocks that belong to the quartz-rich sandstone and mudrock, materials that are found in the western Taiwan basins above 12 km. Based on the Vp/Vs ratios in Figure 3a, we infer from the tomographic image (Figure 2b) the existence of a felsic core in the midcrust under the Central Range, surrounded by materials with higher ratios (Figures 2b and 2c). This inference is consistent with the abundance of granitic rocks in the eastern Central Range [Lan et al., 1996, 2002]. The extensive felsic core of the Central Range as implied by the Vp/Vs resides in the area

1Auxiliary materials are available in the HTML. doi:10.1029/2012GL053649.
where apparent collision thickening is at its maximum [Kuo-Chen et al., 2012].

5. **The α-β Quartz Transition (ABQT) and P/T Beneath the Central Range?**

[8] To explore further the possible significance of our Vp/Vs observations we choose three vertical profiles along a cross section that includes (a) the Coastal Plain of western Taiwan, (b) the Central Range and (c) the Coastal Range (Figures 2b, 3b, and 3c). The average values of Vp/Vs are plotted. While the values for (a) and (c) are generally higher than 1.73, in (b), they are noticeably lower than 1.73 in the depth range of 12–30 km and a minimum of 1.55 is reached at 24 km. In Figure 3b, it is obvious that the low Vp/Vs values occur in a depth range of low Vp.

[9] The systematic decrease and increase of Vp/Vs in the mid-crust under the Central Range is quite clear and significant. In exploring the factors that may affect Vp/Vs we rule out fluid pressure or melting (see discussion), but it is well known that a single-crystal quartz undergoes a phase transition at 575°C under atmospheric pressure from the lower-symmetry trigonal form, α-quartz, to the higher-symmetry hexagonal form, β-quartz [Ohno et al., 2006]. This transition temperature (Ttr) rises with pressure at a well-established rate of 0.256°C/MPa [Shen et al., 1993]. As temperature approaches Ttr, α-quartz undergoes elastic softening due to the volume differential between the two forms, which decreases Vp more than Vs causing a marked decrease in the Vp/Vs ratio [Kern, 1982]. A minimum of ~1.6 or less is reached when this transition occurs [Kern, 1982]. The ratio increases as the temperature increases beyond Ttr. This transition has been observed not only in experiments on a single quartz crystal at atmospheric pressure [Ohno et al., 2006] but also on quartz-bearing rocks at high pressures [Kern, 1982]. Figure 4b shows the Vp/Vs of a single quartz crystal, several felsic rocks, and our Central Range profile. In this figure, our Central Range profile is next to the curve for a rock with 22% quartz content [Kern, 1982]. The implied quartz content of the low Vp/Vs materials is reasonable in view of Lan et al. [1996] estimate of 14–43% quartz content for the granitic rocks in the Central Range. Assuming the minimum in our profile represents the ABQT at ~24 ± 3 km (~868 MPa) and applying Shen et al. [1993] relation we arrive at a Ttr of about 750 ± 25°C (error from a half of a grid cell in the model). We note that the 1D profile we obtain is not as sharp as the laboratory ABQT curves. The more gradual variation in our curve may come from averaging the values in the sampling box under the Central Range, as well as the effect of sampling...
Figure 3. (a) P-velocity (Vp) versus Vp/Vs ratio for crustal rocks [Hyndman, 1979; Castagna et al., 1985; Jizba, 1991; Holbrook et al., 1992; Castagna et al., 1993; Christensen, 1996; Matsumoto et al., 2010]. Error bar: 1σ. Dashed lines: regression lines for different rocks [Castagna et al., 1985, 1993]. Red color-coded symbols: felsic rocks. Blue color-coded symbols: mafic rocks. Green color-coded symbol: hydrated rock. (b) Vp-Vp/Vs-depth profiles for different tectonic environments. Number: depth (km). Red arrow: Lowest Vp (5.52 ± 0.31 km/s) and Vp/Vs (1.55 ± 0.07) ratio occurring at 24 km depth in the Central Range. (c) Vp/Vs versus depth profiles for different tectonic environments. Error bar: 1σ.

Figure 4. (a) Temperature-pressure diagram for metamorphic facies, solidus curves, and thermal gradients. Red star: the depth of the α-β quartz transition found in Tibet [Mechie et al., 2004] and Taiwan (this study). Blue dotted line: thermal gradient. Thin black line: Solidus curve for given H2O activity [Ebadi and Johannes, 1991]. Thick black line: boundary of metamorphic facies. (b) Vp/Vs versus temperature profiles from rock experiments with different confining pressures [Kern, 1982; Ohno et al., 2006]. Red line: Vp/Vs versus temperature profile in the Central Range. 30°C/km is the thermal gradient obtained in this study after conversion from the ABQT depth to temperature. Qtz.: quartz. Error bar: 1σ of Vp/Vs ratio.
in a volume of rock with material and thermal heterogeneity due to complex deformation.

[10] Using this transition as a thermometer we obtain a present-day geothermal gradient of about 30 ± 3 °C/km above a depth of 24 ± 3 km in the Central Range (Figure 4a). Such a value is consistent with an estimate of 350°C at ~12 km to explain the cutoff depth of seismicity [Wu et al., 1997; Lin, 2000] and 680–750°C at 20 ± 5 km depth to account for low Qp (287.7 ± 2.1) and Qs (219.0 ± 1.5) [Lee et al., 2010]. Compared to a temperature of 500°C from Raman spectroscopy of carbonaceous materials (RSMC) in the eastern Central Range [Beyssac et al., 2007], our estimate is significantly higher, but the RSMC temperature estimate is not associated with a definite depth and represents conditions inside the orogen before the exhumation. The rapid exhumation (10–20 mm/yr) of the Central Range [Lee et al., 2006; Ching et al., 2011] could have led to an uplift of the isotherms under the high ranges, raising the temperature at shallower depth and creating a horizontal temperature gradient; the contrast of Vp and Vp/Vs at the middle- to lower-crustal levels with those of the surrounding areas.

6. Discussion and Conclusions

[11] The α-β quartz transition from Vp/Vs imaging could be a powerful indicator for the P/T conditions in the crust. However, it depends on the availability of dense seismic stations and availability of seismic sources. Also, there are other factors than P/T to take into consideration: crustal anisotropy and water content among them. Although the metamorphic rocks of Taiwan are highly anisotropic, as high as 15% (N. Christensen, personal communication, 2009), studies of local shear wave splitting measurements in the Central Range have obtained δt of 0 to 0.3 sec, but mostly less than 0.1 sec for paths mostly in the Central Range [Chang et al., 2009]. These δt’s correspond to 0–6% anisotropy in the upper 30 km of the crust. They are equal to or less than the travel time residuals of the tomographic inversion results. Hence, the assumption of isotropy is a good approximation to the rock properties to a first order. The fluid pressure or bounded water can affect Vp/Vs noticeably. In general, structurally-bound water yields high Vp/Vs ratios (see, e.g., data for serpentinite in Figure 3a) and high fluid pressure and partial melting also lead to higher Vp/Vs ratio (see, e.g., data for serpentinite in Figure 3a) and high fluid pressure and partial melting also lead to higher Vp/Vs ratio [Mueller and Massonne, 2001]. Regarding the fluid or partial melting, the magnetotelluric transect across the Central Range in the vicinity of our 1D profiles shows a resistivity of ~500 Ohm-m in the low Vp/Vs zone, signifying anhydrous conditions [Bertrand et al., 2009]. As shown in Figure 4a, rocks with H2O activity below 0.5 should remain solid [Ebadi and Johannes, 1991; Brown, 2001]. Thus, it is the combination of being dry and under elevated temperature from rapid exhumation in the middle and lower crust under the Central Range that allowed the ABQT to occur.

[12] In a young orogen such as Taiwan where an extensive root system is extant [Wu et al., 1997; Kuo-Chen et al., 2012] and rapid deformation and uplifting are well-documented [Hsu et al., 2009; Ching et al., 2011], the knowledge of the present P/T conditions and materials in the core of the orogen could help in the understanding of the dynamics of mountain building. Lowry and Pérez-Gussinyé [2011] recently proposed that the presence of abundant quartz in the continental crust is important in localizing deformation; while they deem hydration weakening as one of the conditions in the feedback processes the ABQT in Taiwan may play the role [Mechie et al., 2004]. In any case, Taiwan is an excellent site where patterns of strain focusing and crustal weakening during the early stages of tectonic deformation can be explored in detail.

[13] Acknowledgments. The TAIGER project was supported by the Continental Dynamics Program of the National Science Foundation (EAR0410227 and EAR1010645). H. K-C was also supported by National Science Council of Taiwan. Discussions with C.Y. Lan, D. Okay, N. Christensen, R. P. Wintsch, J.-C. Sibuet, and E.-C. Yeh are very helpful. Comments by V. Schulte-Pekrum, B. Schmandt, A. Jones, and one anonymous reviewer are highly appreciated.

[14] The Editor thanks Brandon Schmandt and an anonymous reviewer for their assistance in evaluating this paper.

References

Ho, C. S. (1986), An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan, p. 163, Central Geological Survey, Taiwan.

