Microlocal Analysis in Imaging

Birsen Yazıcı & Venky Krishnan
Rensselaer Polytechnic Institute
Electrical, Computer and Systems Engineering

August 2nd, 2010

1Special thanks to Dr. Jon Sjogren and Dr. Arje Nachman of Air Force Office of Scientific Research (AFOSR) for supporting this research under the agreements FA9550-07-1-0363 & FA9550-09-1-0013 and to the National Science Foundation (NSF) under Grant No. CCF-08030672.
Outline

• Part I – Motivations – 1:30-1:50

• Break – 1:50-2:00pm

• Part II – Basics of microlocal analysis – 2:00-3:00pm

• Break – 3:00-3:10pm

• Part III – Applications of microlocal analysis in imaging – 3:10-4:30pm
Table of Contents

PART I

• Motivations
• What is microlocal analysis?
• Mathematics of imaging
• Advantages of microlocal techniques
• Conclusion
Table of Contents

PART II

• Pseudodifferential and Fourier Integral Operators (FIOs)
• Singular Support and Wavefront sets
• Method of Stationary Phase
• Action of FIOs on Singular Support and Wavefront Sets
• Canonical Relations
• Inversion of FIOs
Table of Contents

PART III

• Synthetic Aperture Imaging (SAI) modalities
• SAI forward model
• SAI image formation via microlocal techniques
 – Bistatic SAI
 – Monostatic SAI
 – Multistatic SAI
 – Synthetic Aperture Hitchhiker
 – Doppler Synthetic Aperture Hitchhiker
• Conclusions
Part 1 – Introduction & Motivations

Birsen Yazıcı & Venky Krishnan

Rensselaer Polytechnic Institute

Electrical, Computer and Systems Engineering

August 2nd, 2010
Microlocal Analysis in Imaging

- Near ground sensors
- Close-in sensors
- Space-based sensors

Geological Monitoring
Ecological/Environmental monitoring
Surveillance/Security
Civil infrastructure monitoring
Weather monitoring
Human health monitoring
Problem Space and the Role of Microlocal Analysis

• Themes
 – Multiple heterogeneous mobile or stationary autonomous sensors
 – Sensors with adaptive transmit and receive parameters (arbitrary trajectories, waveforms etc.)
 – Operating in complex environments – multiple scattering, dynamically changing medium, clutter, noise etc.

• Approach
 – Physics-based and statistical modeling
 – Tomographic approach

• Microlocal analysis – An integral bridging role
Microlocal Analysis

• **Microlocal analysis** – Abstract mathematical theory of singularities, associated high frequency structures and *Fourier Integral Operators* (FIOs)

• Roots in physics…

• **Key concepts**: *Singularities or wavefront sets* → A mathematical description of “edges”, heterogeneities, or not so “well-behaving” parts of the medium

• FIO theory → A common framework for many wave-based imaging/sensing problems

• Can work in complex environments
Microlocal Analysis

• “Local”: refers to local processing:
 • Localizing a function near a point – Multiplying by a smooth non-vanishing function

• “Micro”: refers to directional analysis:
 • Analyzing the directional Fourier transform of the localized function

• Strong connection to adaptive signal processing & physics
History of Microlocal Analysis

- Term introduced by three Japanese mathematicians – Sato, Kawai and Kashiwara in the 1970s
- Developed from 1950s onwards
- Sato (Wolf prize ‘03) in 1969 was one of the first to analyze microlocal behavior of functions
- Hörmander (Fields medal ‘62, Wolf prize ‘88) introduced microlocal techniques in the context of partial differential equations (PDEs)
- Early roots in geometric optics
Microlocal Analysis in Imaging Problems

- Inversion of X-ray transforms – Katsevich
- Electrical impedance tomography – Sylvester and Uhlmann
- Reflection seismology – De Hoop, Symes, Bleistein, Petkov and Stoyanov and many others
- Synthetic aperture and inverse synthetic aperture imaging – Nolan, Cheney and Yazıcı
- Electron and thermo acoustic tomography – Quinto, Kuchment
Objectives

• Well-developed mathematical theory

• Introduce key concepts and techniques of microlocal analysis to engineering community

• Demonstrate its strong relevance to challenging sensing and imaging problems

• Establish the terminology and commonalities between signal processing and microlocal analysis

• Motivate wider applications of the theory in engineering problems
Sensing and Imaging

Imaging – Process of extracting *spatially resolved physical, biological or chemical property* of an object or medium by means of an *imaging probe* (wave, particle etc.); a *measurement system* and by subsequent *processing of measurements*.
Probes, Physical Properties and Imaging Systems

<table>
<thead>
<tr>
<th>Probe</th>
<th>Parameter</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic</td>
<td>Density, Compressibility</td>
<td>Seismic Imaging, Ultrasonic Imaging</td>
</tr>
<tr>
<td>Electrical</td>
<td>Conductivity, Permittivity</td>
<td>Electrical Impedance Tomography (EIT)</td>
</tr>
<tr>
<td>Magnetic</td>
<td>Permeability</td>
<td>Electromagnetic Induction (EMI)</td>
</tr>
<tr>
<td>Radiowave</td>
<td>Permittivity, Conductivity</td>
<td>Ground Penetrating Radar (GPR)</td>
</tr>
<tr>
<td>Microwave</td>
<td>Nuclear spin</td>
<td>Magnetic Resonance Imaging (MRI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microwave Imaging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terahertz Imaging</td>
</tr>
<tr>
<td>Optical</td>
<td>Absorption coefficient, Refractive index, Fluorescence rate, Diffusion & absorption coefficient</td>
<td>Infrared Imaging, Optical Imaging, Fluorescence Imaging, Diffuse Optical Tomography (DOT)</td>
</tr>
<tr>
<td>X-rays</td>
<td>Absorption coefficient</td>
<td>Computed Tomography (CT)</td>
</tr>
<tr>
<td>γ-rays</td>
<td>Density of radio nucleids</td>
<td>Nuclear medicine</td>
</tr>
<tr>
<td>Particles</td>
<td>Flux of chemical emissions, Flux of nuclear emissions, Scattering cross-section, Rate of secondary emissions</td>
<td>Chemical sensing, Nuclear medical imaging, Scanning Electron Microscopy (SEM)</td>
</tr>
</tbody>
</table>
Mathematics of Imaging

- **Forward model** - The field $U = U(x, y, z)$ typically obeys a PDE dictated by the physics propagation in the medium

\[\Theta\{U, \alpha\} = 0 \]

- The position-dependent quantity $\alpha = \alpha(x, y, z)$ – typically a coefficient in the PDE

- Example - Helmholtz equation

\[\nabla^2 U(x) + k^2(x)U(x) = S(x, \omega) \]

- Typically – PDE is linear in U and nonlinear in α
Mathematics of Imaging

- Inhomogeneity causes perturbation in the medium properties
 \[k^2(x) = k_0^2(x) + f(x) \]
 Image to be reconstructed
 Background medium
 Perturbed medium

- Model for the incident field
 \[U_p(y) = \int G(y, x, \omega) S(x, \omega) dx \]

- Linearized model for the scattered field
 \[U_s(z) = \int \int G(z, y, \omega) G(y, x, \omega) S(x, \omega) f(y) dx dy \]
Ray theoretic approximation to the Green’s function

\[G(y, x, \omega) \approx e^{i\omega \tau(x, y)} \sum_{n=0}^{\infty} \frac{A_n(x, y)}{\omega^n} \]

\(\tau(x, y) \) is the solution of the Eikonal equation:

\[|\nabla_x \tau(x, y)|^2 = k_0^2(x) \]

\(A_n(x, y) \) satisfy certain transport equations along rays connecting \(x \) and \(y \). Can be solved successively.
Mathematics of Imaging

- **Input-output relationship**

\[u_s(z, t) = \mathcal{F}[f](z, t) \]

- **Kernel of \(\mathcal{F} \) is in the following form:**

\[F(t, z, y) = \int e^{i\varphi(\omega, z, y, t)} A(\omega, z, y, t) d\omega \]

- \(\mathcal{F} \) is a Fourier Integral Operator (FIO) under some conditions
• FIO defines a Generalized Radon Transform

\[u_s(z, t) = \mathcal{F}[f](z, t) \]

\[F(t, z, y) = \int e^{i\varphi(\omega, z, y, t)} A(\omega, z, y, t) d\omega \]

• Kernel of \(\mathcal{F} \) shows \(\rightarrow \) weighted/filtered integral of an unknown function \(f \) along \text{curved manifolds} such as hyperplanes, lines, circles, ellipses, hyperbolas etc.

• Close connection between wave-based imaging and inverse problems of integral geometry
X-ray Computed Tomography

- Determine X-ray attenuation coefficient $f(x)$ along lines
- Measurements modeled as integrals along lines

$$\mathcal{F}_{X-ray}[f](L) = \int_{L} f(x) \, dx$$

- Manifold – Line
- Weight – 1
Emission Tomography

- A nuclear medicine imaging technique
- Body injected with gamma-emitting radio isotope. Isotopes accumulate at tumor sites
- Determine the concentration of radiating source

\[
\mathcal{F}_{ET}[f](L) = \int_{L} f(x) \exp \left(- \int_{L(x)} \mu(y) \, dy \right) \, dx
\]

- Manifold – Lines
- Weight – Exponential
Synthetic Aperture Imaging - Radar

- Electromagnetic waves are transmitted along a moving antenna and scattered waves are measured along the same (or different) antenna.
- Determine the reflectivity of the ground.

\[
F_{SAR}[f](s, t) = \int e^{-i\omega(t-\frac{2}{c_0}|x-\gamma(s)|)} A(x, s, \omega) f(x) \, dx \, d\omega
\]

- Manifold – Circles (or ellipses)
- Weight – Defined by the antenna trajectory and transmitted waveforms.

B. Yazici & V. Krishnan
Similar to synthetic aperture radar

Synthetic aperture sonar uses acoustic waves instead

Transmitted signal attenuates due to absorption for the case of GPR and GPS

Manifold – Circles (or ellipses)

Weight – Defined by antenna/transducer trajectory, transmitted waveforms as well as ground absorption

Measurement model:

$$F_{BSAI}[f](t, y, z) = \int e^{-i\omega(t-(\tau(x,y)+\tau(x,z)))} A(x, y, z, \omega) f(x) dx d\omega$$
Thermoacoustic Tomography

- Short electromagnetic pulse sent in a biological tissue
- Energy absorbed by the object depends on density, concentration of oxygen and hemoglobin, water content etc.
- Absorbed energy triggers a thermoacoustic response
- Determine the absorption coefficient

\[\mathcal{F}_{\text{TAT}}[f](x,t) = \int_{|y|=1} f(x + ty) \, d\sigma(y) \]

Manifold – Spheres
Weight – 1
Doppler Tomography

- Use acoustic or EM waves
- Determine the velocity of a moving fluid such as blood
- Model for the velocity vector field
 \[f(x) = [f_1(x), f_2(x), f_3(x)]^T \]
- Doppler transform
 \[\mathcal{F}_{Dop}[f](x, \theta) = \int \sum_{i=1}^{3} f_i(x + t\theta) \theta_i \, dt \]
- Manifold – Lines
- Weight – \(\theta_i \)

B. Yazıcı & V. Krishnan
Microlocal Analysis and Imaging

- FIO theory provides a common framework for a wide range of imaging problems
- Medium heterogeneities/ anomalies can be mathematically described by the concept of singularities and wavefront sets
- Microlocal analysis tells us how the singularities of the medium propagate to the measured data
- Recovering the heterogeneities involve back-propagating the singularities in the data to the image domain via inversion of FIOs
Advantages of Microlocal Inversion

• Leads to new and novel imaging modalities
• Reconstructs images with correct “geometry”
• Applicable under non-ideal imaging scenarios
 – Incomplete or limited view data
 – Noise and clutter
 – Arbitrary source and detector locations
 – Complex environments involving multiple scattering
• Computational efficiency
Conclusion

Diverse Problems

Sensing & imaging

CT SPECT TAT Sonar Ultrasound tomography Doppler tomography Radar imaging Seismic imaging

Inverse problems in integral geometry

Common Approach

Microlocal Analysis